Design and optimization of a throttle body assembly by CFD analysis
نویسندگان
چکیده
Throttle body assembly plays a vital role in metering the airflow. It mainly consists of a butterfly valve to vary the flow area to control air flow rate through it. There is hardy any established procedure to design a throttle body assembly based on the engine specifications. In order to bridge the gap, this study, design and optimization of a throttle body assembly for a single-cylinder engine used in two-wheeler application has been analyzed along with the investigation of critical flow through various sub systems using computational fluid dynamics (CFD). To start with, the throttle bore and bypass passage diameters are calculated from the basic flow equations. Using CFD, best possible throttle shaft profile is arrived at, which will enhance airflow to the engine. The airflow rate for different throttle openings is predicted taking into account the distribution of main and bypass flow. It is observed that the airflow through main and the bypass passage are almost same around 12% throttle opening and the airflow through main passage takes over beyond 25% opening. The novelty of this study is that airflow through the bypass is also predicted for different screw positions. From the analysis of results, it is found that with around two turns of bypass screw opening, the required amount of air flow rate could be achieved through the bypass passage to run the accessories of the engine at idling and also to meet the required performance and emissions levels as per the design target. In addition, there is a good agreement of CFD predictions with experimental results with an error of about 6%. Finally, it is concluded that the procedure adopted in this study to design the throttle body as per engine specifications will be very useful for the engine designers and in this aspect, CFD plays an important role.
منابع مشابه
Autonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملA Lean Manufacturing Roadmap for an Automotive Body Assembly Line within Axiomatic Design Framework
In this paper we are to present a practical application of Axiomatic Design (AD) methodology, as a roadmap to lean production, in redesigning a car body assembly line. Axiomatic Design theory provides a framework to simplify the whole problem. According to the AD principles, a hierarchical structure has been developed. The developed structure originated in lean manufacturing principles and exis...
متن کاملOptimization-based non-linear Control Law with Increased Robustness for Air Fuel Ratio Control in SI Engines
In spark ignition (SI) engines, the accurate control of air fuel ratio (AFR) in the stoichiometric value is required to reduce emission and fuel consumption. The wide operating range, the inherent nonlinearities and the modeling uncertainties of the engine system are the main difficulties arising in the design of AFR controller. In this paper, an optimization-based nonlinear control law is a...
متن کاملImpeller and volute design and optimization of the centrifugal pump with low specific speed in order to extract performance curves
Now a day centrifugal pumps are vital components of industries. Certainly, one of the most important specifications of centrifugal pumps are the performance curves. In the present work, performance curves of a centrifugal pumps are obtained by Computational fluid dynamics (CFD) and as an outcome, CFD results compare by practical curves. At the first step impeller and volute are designed with tw...
متن کاملValidation of Plate Heat Exchanger Design Using Cfd
Heat exchanger is an essential device used in complex engineering systems related to heat transfer processes in many industrial applications. Plate Heat Exchanger (PHE) is an important part of a condensing or evaporating system. Among many of factors which should concentrate on, the heat transfer and pressure drop is most important part during sizing and rating the performance of PHE. Due to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013